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1 Topological groups

Definition 1.1. A topological group G is a group with a topology such that the multipli-
cation map

m : G×G→ G

(g1, g2) 7→ g1g2

and the inversion map

i : G→ G

g 7→ g−1

are continuous.

We leave to the reader to verify the basic facts.

Proposition 1.2. Suppose G is a topological group. Let H be a subgroup of G and N be a
normal subgroup of G.

(a) If H is open, then H is closed.

(b) If H is closed and has finite index in G, then H is open.

(c) Suppose G is compact. Then, H is closed and has finite index if and only if H is open.

(d) The quotient group G/N is Hausdorff if and only if N is closed.

(e) The quotient space G/H is discrete if and only if H is open.

(f) H =
⋂

e∈Uopen sets

UH.

Definition 1.3. (Inverse limit and Direct limit) Let I be directed index set, that is for all
i, j ∈ I, there exists k ∈ I such that i, j ≤ k.

(a) We say (Gi, φij) is an inverse system of groups over I if for i ≥ j, we have a group
homomorphism

φij : Gi → Gj.
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An inverse limit

G := lim
←
Gi

is a group with a group homomorphism πi : G→ Gi such that for any group G′ with
group homomorphisms fi : G′ → Gi and fj = φij ◦ fi, there exists a unique group
homomorphism f : G′ → G such that the following diagram is commutative:

G′

G

Gi Gj

∃!f
fi fj

πi πj

φij

.

(b) We say (Gi, φij) is an inverse system of groups over I if for i ≤ j, we have a group
homomorphism

φij : Gi → Gj.

A direct limit

G := lim
→
Gi

is a group with a group homomorphism φi : G→ Gi such that for any group G′ with
group homomorphisms fi : Gi → G′ and fj = φij ◦ fi, there exists a unique group
homomorphism f : G→ G′ such that the following diagram is commutative:

Gi Gj

G

G′

φij

φi

fi fj

φj

∃!f

.

Proposition 1.4. Suppose (Gi, φij) is an inverse system of topological groups. Then, the
inverse limit G := lim

↔
Gi can be identified as a closed subspace of the direct product

∏
Gi.

In fact,

G =
{

(gi) ∈
∏

Gi : φij(gi) = gj for i ≥ j
}
.

Definition 1.5. (Profinite group) A profinite group G is an inverse limit of finite groups
with discrete topology.

Theorem 1.6. A topological group G is profinite if and only if G is compact, Hausdorff and
totally disconnected.

Proposition 1.7. Suppose G is a profinite group and H be a subgroup. Let U be the set of
all open normal subgroups in G. Then,
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(a)
⋂
N∈U

N = {1}

(b) G ∼= lim←−
N∈U

G/N .

Example 1.8. Suppose L/K is a Galois extension (possibly infinite). Then, the Galois
group

Gal(L/K) = lim←−
E/K finite Galois

Gal(E/K)

is a profinite group.

Example 1.9. The p-adic integers Zp is an inverse limit of Z/pkZ,

Zp = lim
←−

Z/pkZ

with natural quotient maps Z/pmZ→ Z/pm−1Z.

Example 1.10. The profinite completion of Z is defined as

Ẑ := lim
←−

Z/nZ

with the group homomorphisms Z/nZ→ Z/mZ for m | n.
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2 Topological G-module

Definition 2.1. Let G be a topological group. A topological G-module A is an abelian
topological group such that the G-action on A

π : G× A→ A

(g, a) 7→ g · a

is continuous.

For the remaining of the talk, we assume that A has discrete topology. We say that A
is a discrete G-module if it is a topological G-module for the discrete topology on A.

Proposition 2.2. Let G be a compact group and A be a G-module with the discrete topology.
Then the following are equivalent:

(i) A is a discrete G-module

(ii) The stabilizer Ga of a ∈ A is open in G.

(iii) Let U be the set of all normal subgroups in G. Then,

A =
⋃
N∈U

AN .

Proof. For (i) ⇒ (ii), note that the set

π−1(a) ∩
(
G× {a}

)
= Ga × {a}

is open in G× A. Hence, Ga is open in G.

For (ii) ⇒ (iii), since G is compact and Ga is open, we know that Ga has finite index
and hence has only finitely many conjugates, by Orbit-stabilizer theorem. Consider

N :=
⋂
g∈G

gGag
−1.

This is a finite intersection of open subgroups and thus is open in G. Furthermore, we have
a ∈ AN .

For (iii) ⇒ (i), suppose a ∈ AN for some open normal subgroup N . Let b ∈ A be an
element in the G-orbit of a. Then, there exists g ∈ G such that g · b = a and

Ng × {b} ⊆ π−1(a)

is open in π−1(a).
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3 Cohomology of a topological group G with coeffi-

cients in a discrete G-module

In this section, we assume G is a topological group and A is a discrete G-module. Consider
the cochain complex consisting of continuous cochains

Cn(G,A) := {f : Gn → A|f is continuous}.

Remark 3.1. Note that we have the coboundary maps:

dn : Cn(G,A)→ Cn+1(G,A)

as usual. Since dn(f) involves addition in A and the G-action in A, this is well-defined.
Furthermore, if α : A → B is a homomorphism of discrete G-modules, then one easily
checks that α ◦ f is continuous and the induced map

αn : Cn(G,A)→ Cn(G,B)

f 7→ α ◦ f

commutes with dn and hence we have maps on cohomology groups

αn : Hn(G,A)→ Hn(G,B).

Lemma 3.2. Let G be a topological group and consider a short exact sequence

0→ A
α−→ B

β−→ C → 0

of discrete G-modules. Then for every n ≥ 0, we have the short exact sequence

0→ Cn(G,A)
αn

−→ Cn(G,B)
βn

−→ Cn(G,C)→ 0.

Proof. It is easy to see that both αn and βn are well-defined. Also, injectivity of αn follows
because α is injective. The exactness also follow easily. It remains to check surjectivity: let
f : Gn → C be a continuous function. For each c, define Uc = f−1(c). Since C is discrete,
Uc is open and

Gn =
⋃

c∈Im(f)

Uc.

Since β is surjective, there exists bc ∈ B such that β(bc) = c. Now, define

h : Gn → B

Uc 7→ bc.

Note that h−1(bc) = f−1(c) = Uc and hence h is continuous. Also, βn(f) = h and this proves
surjectivity of βn.

The following corollary then follows easily.

Corollary 3.3. Every short exact sequence

0→ A→ B → C → 0

of discrete G-modules induces a long exact sequence of cohomology groups

0→ H0(G,A)
α0

−→ H0(G,B)
β0

−→ H0(G,C)
δ0−→ H1(G,A)

α1

−→ ...
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4 Profinite Cohomology

In this section, we further assume that G is profinite. Recall for N normal in G, we have
the inflation maps

Inf : Hn(G/N,AN)→ Hn(G,A)

induced by G→ G/N and AN ↪→ A. Furthermore, for N3 ⊆ N2 ⊆ N1 normal in G, we have

Hn(G/N1, A
N1) Hn(G/N2, A

N2)

Hn(G/N3, A
N3).

Inf

Inf
Inf

Now, if we identify

G = lim←−
N open normal

G/N,

then the inflation maps give us a direct system of Hn(G/N,AN).

Theorem 4.1. Let G be a profinite group and A be a discrete G-module. Then for n ≥ 0,

Hn(G,A) ∼= lim−→
N open normal

Hn(G/N,AN)

where the direct system is given by inflation maps. Furthermore, these isomorphisms are
natural in A.

Proof. We show that

lim−→
N open normal

Cn(G/N,AN)
∼=−→ Cn(G,A)

and the maps Cn(G/N1, A
N1)→ Cn(G/N2, A

N2) are given by composing with the quotient
maps

(
G/N2

)n → (
G/N1

)n
.

Each element in lim −→
Nopen normal

Cn(G/N,AN) is represented by a cochain f ∈ Cn(G/N,AN

for some normal subgroup N . We define

f̃ : Gn → A

to be the composite of the quotient map Gn →
(
G/N

)n
and f . So this defines a group

homomorphism

φ : lim−→
N open normal

Cn(G/N,AN)→ Cn(G,A)

f 7→ f̃ .

Injectivity of φ follows from the definition. Now we show that φ is surjective. Suppose
g : Gn → A is a continuous cochain. Since Gn is compact and A is discrete, the image Im(g)
is a finite set. For each a ∈ Im(g), g−1(a) is open and hence contains an n-fold product of
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open subgroups, each of which contains an open normal subgroup. Take the intersection of
all these open normal subgroups and denote it as Na. Then, we obviously have

g(Na) = a

for each a ∈ Im(g). Define

N :=
⋂

a∈ Im(g)

Na.

Since this is a finite intersection of open normal subgroups, N is open and normal. Further-
more, note that Im(g) ⊂ AN and so g : Gn → A factors through

Gn AN A

(
G/N

)n
g

g′

and hence φ(g′) = g.

To finish the proof, it remains to prove the isomorphism φ is natural in A. This follows
because inflation maps on cochains are natural: let α : A → B be a homomorphism of
discrete G-modules. For N2 ⊂ N1 normal in G, we have

Cn(G/N1, A
N1) Cn(G/N2, A

N2)

Cn(G/N1, B
N1) Cn(G/N2, B

N2)

αn

Inf

αn

Inf

.

Corollary 4.2. Suppose G is profinite and A is a discrete G-module. Then,

H0(G,A) = AG

and Hn(G,A) is torsion for all n > 0.

Proof. This statement is true for all cohomology groups in the direct system. The corollary
follows from the fact that the direct system of torsion groups is again torsion.

If G is a profinite group (in particular Hausdorff and compact), then a subgroup H is
profinite if and only if H is closed. We end the section by including the inflaction-restriction
sequence without proof.

Theorem 4.3. (Inflation-Restriction) Let H be a closed normal subgroup of a profinite
group G and A be a discrete G-module. If H i(H,A) = 0, for all 1 ≤ i ≤ n, then we have
the exact sequence

0→ Hn(G/H,AH)
Inf−→ Hn(G,A)

Res−−→ Hn(G,A).
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5 Galois Cohomology

We specialise in the case where G = Gal(L/K) is the Galois group of a field extension L/K.
Recall that the Galois group Gal(L/K) is a profinite group with basic open sets Gal(L/E)
around 1 for [E : K] <∞. We then have

Gal(L/K) ∼= lim
E/K finite Galois

Gal(E/K).

where each Gal(E/K) is endowed with the discrete topology. Refer to: https://docs.

wixstatic.com/ugd/67035f_5cf35ba026c84241ad274ef8a648d540.pdf.

Notice that L and L× are discrete G-modules. In fact, for 0 6= α ∈ L, the stabiliser of
α in G is

Gα = Gal(L/K(α))

which is open in G because K(α) is a finite extension over K.

Theorem 5.1. (Hilbert’s 90) Suppose L/K is Galois with G = Gal(L/K). Then,

H1(G,L×) = 0.

Proof. Since G is a profinite group and L× is a discrete G-module, we have

H1(G,L×) ∼= lim−→
E/K finite Galois

H1(Gal(E/K), E×).

Therefore, we may assume L/K is finite. Written multiplicatively, a crossed homomorphism
f : G→ L× is a map such that

f(στ) = σ(f(τ)) · f(σ)

and a principal homomorphism g : G → L× is a map for which there exists b ∈ L× such
that

g(σ) =
σ(b)

b

for all σ, τ ∈ G. Our goal is to show that every crossed homomorphism is principal.

Given a crossed homomorphism f , the independence of characters implies that the sum∑
τ∈G

f(τ)τ 6= 0

is not identically 0. Therefore, pick α ∈ L× such that∑
τ∈G

f(τ)τ(α) = b ∈ L×.

Then, for every σ ∈ G,

σ−1(b) =
∑
τ∈G

σ−1(f(τ)) · σ−1(τ(α))

=
∑
γ∈G

σ−1(f(σγ)) · γ(α)

=
∑
γ∈G

σ−1(σ(f(γ))f(σ)) · γ(γ)

= σ−1(f(σ))b

8

https://docs.wixstatic.com/ugd/67035f_5cf35ba026c84241ad274ef8a648d540.pdf
https://docs.wixstatic.com/ugd/67035f_5cf35ba026c84241ad274ef8a648d540.pdf


and thus

f(σ) =
σ(b)

b

as required.

Corollary 5.2. Let L/K be a finite cyclic extension with Gal(L/K) = 〈σ〉. Then,

ker(NL/K) =
{
α ∈ L× : α =

σ(β)

β
for some β ∈ L×

}
.

Proof. Recall that the augmentation ideal ker(NL/K) = IG = 〈σ − 1〉 as an ideal in Z[G].
Then,

0 = H1(G,L×) = H−1(G,L×) = ker(NL/K)
/
IGL

× .

We also have an additive version of Hilbert’s 90:

Theorem 5.3. Let L/K be a Galois extension with G = Gal(L/K). Then,

Hn(Gal(L/K), L) = 0

for all n ≥ 1.

Proof. Just as before, we may assume L/K is finite. By the normal basis theorem, there
exists α ∈ L× such that {σ(α) : σ ∈ G} is a K-basis for L. Consider the map:

ϕ : IndG(K) = Z[G]⊗Z K → L∑
i

σi ⊗ xi 7→
∑
i

σi(α)xi.

One easily sees that this is G-module homomorphism. It is surjective by the choice of α and
it is injective by the independence of characters. This shows that L is an induced G-module
and thus

Hn(G,L) = 0

for all n ≥ 1.

As a conseuquence of Hilbert’s 90, we have the inflation-restriction sequence for Galois
extension.

Corollary 5.4. Suppose K ⊂ L ⊂M is a tower of Galois extensions. Then, the sequence

0→ H2(Gal(L/K), L×)
Inf−→ H2(Gal(M/K),M×)

Res−−→ H2(Gal(M/L),M×)

is exact.

In particular, if M = Ksep is a separable closure of K with GK = Gal(Ksep/K), then
we have the following:
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Corollary 5.5. Suppose L/K is Galois. Then, the sequence

0→ H2(Gal(L/K), L×)
Inf−→ H2(GK , (K

sep)×)
Res−−→ H2(GL, (K

sep)×)

is exact.

Example 5.6. For K = Fq a finite field where q is a p-power, we show that

H2(GK , (K
sep)×) = 0.

In fact, for each n ≥ 1, the field extension Fqn/Fq is cyclic of order n and

H2(Gal(Fqn/Fq),F×qn) = Ĥ0(Gal(Fqn/Fq),F×qn) = F×q /N(F×qn).

We show that the norm map is surjective. Let ζ be a primitive (qn − 1)-st root of unity.
Then,

N(ζ) = ζ
qn−1
q−1

which is a primitive (q−1)-st root of unity. This immediately shows thatH2(Gal(Fqn/Fq),F×qn) =
0 and hence

H2(GK , (K
sep)×) = 0.
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