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1 Topological groups

Definition 1.1. A topological group G is a group with a topology such that the multipli-
cation map

m:GEGxG—G
(91, 92) ¥ 9192

and the inversion map

g9

are continuous.

We leave to the reader to verify the basic facts.

Proposition 1.2. Suppose G is a topological group. Let H be a subgroup of G and N be a
normal subgroup of G.

(a) If H is open, then H is closed.

(b) If H is closed and has finite index in G, then H is open.

(¢) Suppose G is compact. Then, H is closed and has finite index if and only if H is open.
(d) The quotient group G/N is Hausdorff if and only if N is closed.

(e) The quotient space G/H is discrete if and only if H is open.
(fH)H= N UL

ecUopen sets

Definition 1.3. (Inverse limit and Direct limit) Let I be directed index set, that is for all
1,7 € I, there exists k € I such that 7,7 < k.

(a) We say (G, ¢;;) is an inverse system of groups over [ if for ¢ > j, we have a group
homomorphism

¢ij : GZ — Gj.



An inverse limit
G =1lmG;,
—
is a group with a group homomorphism 7; : G — G; such that for any group G’ with

group homomorphisms f; : G' = G, and f; = ¢;; o f;, there exists a unique group
homomorphism f : G’ — G such that the following diagram is commutative:

(b) We say (G, ¢i;) is an inverse system of groups over I if for i < j, we have a group
homomorphism

oi; Gy = G
A direct limit
G :=1limG;
=
is a group with a group homomorphism ¢; : G — G; such that for any group G’ with

group homomorphisms f; : G; — G’ and f; = ¢;; o f;, there exists a unique group
homomorphism f : G — G’ such that the following diagram is commutative:

Gi

G/

Proposition 1.4. Suppose (G, ¢i;) is an inverse system of topological groups. Then, the
inverse limit G := im G; can be identified as a closed subspace of the direct product ] G;.
4

In fact,
G ={(9:) € [1Gi: 0iil90) = g for i = j}.

Definition 1.5. (Profinite group) A profinite group G is an inverse limit of finite groups
with discrete topology.

Theorem 1.6. A topological group G is profinite if and only if G is compact, Hausdorff and
totally disconnected.

Proposition 1.7. Suppose G is a profinite group and H be a subgroup. Let U be the set of
all open normal subgroups in G. Then,



(a) (1 N={1}

NeU

(b) G = lim G/N.

Neu

Example 1.8. Suppose L/K is a Galois extension (possibly infinite). Then, the Galois
group

Gal(L/K) = lim Gal(E/K)

E/K finite Galois
is a profinite group.
Example 1.9. The p-adic integers Z, is an inverse limit of Z/p*Z,

Z,= {iElZ/ka

with natural quotient maps Z/p™Z — Z/p™ ' Z.

Example 1.10. The profinite completion of Z is defined as

~

Z -=lmZ/nZ
—

with the group homomorphisms Z/nZ — 7Z/mZ for m | n.



2 Topological G-module

Definition 2.1. Let G be a topological group. A topological G-module A is an abelian
topological group such that the G-action on A

T:GxA— A
(9,a) = g-a

is continuous.

For the remaining of the talk, we assume that A has discrete topology. We say that A
is a discrete G-module if it is a topological G-module for the discrete topology on A.

Proposition 2.2. Let G be a compact group and A be a G-module with the discrete topology.
Then the following are equivalent:

(i) A is a discrete G-module
(ii) The stabilizer G, of a € A is open in G.
(iii) Let U be the set of all normal subgroups in G. Then,

A= UAN.

NeUu

Proof. For (i) = (ii), note that the set
7 Ha) N (G x {a}) = G, x {a}

is open in G x A. Hence, GG, is open in G.

For (ii) = (iii), since G is compact and G, is open, we know that G, has finite index
and hence has only finitely many conjugates, by Orbit-stabilizer theorem. Consider

N = ﬂ gGag "t

geG

This is a finite intersection of open subgroups and thus is open in GG. Furthermore, we have
ac AN,

For (iii) = (i), suppose a € AY for some open normal subgroup N. Let b € A be an
element in the G-orbit of a. Then, there exists g € GG such that ¢g-b = a and

N, x {b} C 7 (a)

is open in 71 (a). O



3 Cohomology of a topological group G with coeffi-
cients in a discrete G-module

In this section, we assume G is a topological group and A is a discrete G-module. Consider
the cochain complex consisting of continuous cochains

C"(G,A) :={f:G" — A|f is continuous}.
Remark 3.1. Note that we have the coboundary maps:
d": C"(G,A) — C"(G, A)

as usual. Since d"(f) involves addition in A and the G-action in A, this is well-defined.
Furthermore, if a : A — B is a homomorphism of discrete G-modules, then one easily
checks that a o f is continuous and the induced map

a": C"(G,A) = C*(G, B)
fraof
commutes with d" and hence we have maps on cohomology groups
a": H'(G,A) — H"(G, B).
Lemma 3.2. Let G be a topological group and consider a short exact sequence
05A%SBS 0

of discrete G-modules. Then for every n > 0, we have the short exact sequence

0— "G, A) S oG, B) 2S5 oG, 0) — 0.

Proof. 1t is easy to see that both " and g™ are well-defined. Also, injectivity of o™ follows
because « is injective. The exactness also follow easily. It remains to check surjectivity: let
f: G™ — C be a continuous function. For each ¢, define U. = f~!(c). Since C is discrete,

U, is open and
¢"= |J U
c€lm(f)

Since f is surjective, there exists b. € B such that 3(b.) = c¢. Now, define

h:G"— B

U. — b..
Note that A~1(b.) = f~'(¢) = U, and hence h is continuous. Also, 8"(f) = h and this proves
surjectivity of 5. m

The following corollary then follows easily.
Corollary 3.3. Every short exact sequence

0A—-B—=C—=0

of discrete G-modules induces a long exact sequence of cohomology groups

0 HG,A) 2% B, B) D mY(G, 0) D HYG, A) 2



4 Profinite Cohomology

In this section, we further assume that G is profinite. Recall for N normal in G, we have
the inflation maps

Inf: H"(G/N, AY) — H"(G, A)
induced by G — G/N and AN — A. Furthermore, for N5y C N, C N normal in G, we have

H™(G /Ny, AN 255 [n(G/N,, AN?)

Inf
. llnf

H"(G /Ny, ANs).

Now, if we identify

G= lm G/N,

N open normal

then the inflation maps give us a direct system of H"(G/N, AN).

Theorem 4.1. Let G be a profinite group and A be a discrete G-module. Then for n > 0,

H"(G,A)=  lim  H"(G/N,AY)

N open normal

where the direct system is given by inflation maps. Furthermore, these isomorphisms are
natural in A.

Proof. We show that

lim  C"(G/N,AY) = C"(G, A)

N open normal

and the maps C"(G/Ny, AM) — C™(G/Ny, AM?) are given by composing with the quotient
maps (G/N»)" — (G/Ny)".

Each element inlim ___ —  C"(G/N, AN) is represented by a cochain f € C*(G/N, AN

open normal
for some normal subgroup N. We define

f:Gr— A

to be the composite of the quotient map G" — (G/N)n and f. So this defines a group
homomorphism

¢: lim  C"(G/N,AN) - C"(G, A)

N open normal
f=f

Injectivity of ¢ follows from the definition. Now we show that ¢ is surjective. Suppose
g : G™ — A is a continuous cochain. Since G™ is compact and A is discrete, the image Tm(g)
is a finite set. For each a € Im(g), g~'(a) is open and hence contains an n-fold product of
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open subgroups, each of which contains an open normal subgroup. Take the intersection of
all these open normal subgroups and denote it as N,. Then, we obviously have

g(Na) = a

for each a € Im(g). Define

N = ﬂ N,.

a€ Im(g)

Since this is a finite intersection of open normal subgroups, N is open and normal. Further-
more, note that Im(g) C AN and so g : G® — A factors through

Gn g sy AN s A

o~ 7

(G/N)"

and hence ¢(¢') = g.

To finish the proof, it remains to prove the isomorphism ¢ is natural in A. This follows
because inflation maps on cochains are natural: let o : A — B be a homomorphism of
discrete GG-modules. For Ny C N; normal in GG, we have

C™(G/N,, ANy Iy on(G/N,, AN?)

b b

C™(G /Ny, BNy 2y On(G/N,, BN2)

Corollary 4.2. Suppose G is profinite and A is a discrete G-module. Then,
HY(G, A) = A®
and H"(G, A) is torsion for all n > 0.

Proof. This statement is true for all cohomology groups in the direct system. The corollary
follows from the fact that the direct system of torsion groups is again torsion. O]

If G is a profinite group (in particular Hausdorff and compact), then a subgroup H is
profinite if and only if H is closed. We end the section by including the inflaction-restriction
sequence without proof.

Theorem 4.3. (Inflation-Restriction) Let H be a closed normal subgroup of a profinite
group G and A be a discrete G-module. If H'(H,A) = 0, for all 1 < i < n, then we have
the exact sequence

0 — H™(G/H, A"y ™ gm(G, A) 2 57(G, A).



5 Galois Cohomology

We specialise in the case where G = Gal(L/K) is the Galois group of a field extension L/K.
Recall that the Galois group Gal(L/K) is a profinite group with basic open sets Gal(L/FE)
around 1 for [F : K] < co. We then have

Gal(L/K) = lim Gal(E/K).

E/K finite Galois

where each Gal(E/K) is endowed with the discrete topology. Refer to: https://docs.
wixstatic.com/ugd/67035f_5cf35ba026c84241ad274ef8a648d540. pdf.

Notice that L and L* are discrete G-modules. In fact, for 0 # o« € L, the stabiliser of
ain G is
Go = Gal(L/K(«))
which is open in G because K () is a finite extension over K.

Theorem 5.1. (Hilbert’s 90) Suppose L/K is Galois with G = Gal(L/K). Then,
HY(G,L*) = 0.

Proof. Since G is a profinite group and L* is a discrete G-module, we have

H\G, LX)~  lm  H'(Gal(E/K),E").
E/K finite Galois

Therefore, we may assume L/K is finite. Written multiplicatively, a crossed homomorphism
f: G — L* is a map such that

floT) = a(f(7)) - f(o)

and a principal homomorphism g : G — L* is a map for which there exists b € L* such
that

for all o, 7 € G. Our goal is to show that every crossed homomorphism is principal.

Given a crossed homomorphism f, the independence of characters implies that the sum
> () #0
TeG
is not identically 0. Therefore, pick a@ € L* such that
> f(r)r(a)=beL"
TEG

Then, for every o € G,


https://docs.wixstatic.com/ugd/67035f_5cf35ba026c84241ad274ef8a648d540.pdf
https://docs.wixstatic.com/ugd/67035f_5cf35ba026c84241ad274ef8a648d540.pdf

and thus

as required. N

Corollary 5.2. Let L/K be a finite cyclic extension with Gal(L/K) = (o). Then,

ker(Np k) = {a el a= % for some [ € LX}.

Proof. Recall that the augmentation ideal ker(Ny k) = I = (0 — 1) as an ideal in Z[G].
Then,

0=HY(G,L*)=H G, L") =ker(Ni/x) /1. 1*.

We also have an additive version of Hilbert’s 90:
Theorem 5.3. Let L/K be a Galois extension with G = Gal(L/K). Then,
H"(Gal(L/K),L) =0

foralln > 1.

Proof. Just as before, we may assume L/K is finite. By the normal basis theorem, there
exists a € L* such that {o(«) : 0 € G} is a K-basis for L. Consider the map:

¢ :nd“(K) =Z[G] @z, K — L

Z 0; Q@ x; — Z Ui(a)l'i.

One easily sees that this is G-module homomorphism. It is surjective by the choice of o and
it is injective by the independence of characters. This shows that L is an induced G-module
and thus

H™(G,L) =0

for all n > 1. O

As a conseuquence of Hilbert’s 90, we have the inflation-restriction sequence for Galois
extension.

Corollary 5.4. Suppose K C L C M 1is a tower of Galois extensions. Then, the sequence

Res

0 — HX(Gal(L/K),L*) 25 HX(Gal(M/K), M*) £ H*(Gal(M/L), M*)

18 exact.

In particular, if M = K*% is a separable closure of K with G = Gal(K*?/K), then
we have the following:



Corollary 5.5. Suppose L/K is Galois. Then, the sequence
0 — H*(Gal(L/K), L") I, H*(Gg, (K*P)*) fes, H*(Gp, (K*P)%)
18 ezact.
Example 5.6. For K = [F, a finite field where ¢ is a p-power, we show that
H2(Gre, (K*7)) = 0.
In fact, for each n > 1, the field extension F»/F, is cyclic of order n and
H*(Gal(Fyn /F,), F%) = H(Gal(F o /F,), F5) = F /N (F).

We show that the norm map is surjective. Let ¢ be a primitive (¢ — 1)-st root of unity.
Then,

which is a primitive (¢—1)-st root of unity. This immediately shows that H*(Gal(Fgn /F,), Fyn) =
0 and hence

H(G, (K*)%) = 0.
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